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MATH 245 F22, Exam 2 Solutions

Carefully define the following terms: Proof by (vanilla) Induction, Big O.

To prove Vn € N, P(n) by (vanilla) induction, we must (i) prove P(1); and (2) prove
Vn € N,P(n) - P(n +1). Let ay,b, be sequences. We say that a, is big O of b, if
dng € N, IM € R, Vn > ng, |an| < M|by|.

Carefully state the following theorems: Proof by Cases theorem, Division Algorithm theorem.
To prove p — q by cases, we must find propositions ¢y, ..., cg such that ¢; V--- Ve =T, and
prove each of (p Ac1) = q,...,(p A cg) — g. The Division Algorithm theorem states: for all
integers a,b with b > 1, there are unique integers g, such that a = bg+r and 0 < r < b.

Prove or disprove: For all n € Z, we must have (n_l)gw € Z.

The statement is true. Let n € Z be arbitrary. Applying the Division Algorithm theorem to
n, 3, we get integers ¢q,r with n = 3¢+ r and 0 < r < 3. We now have three cases:
—1n(n+1 —1)(3 1
Caser =0: & 1)3( +1) = (: i(?’f)(mr ) 1: (n—1)(g)(n+1) € Z.
Case r = 1: (= )g(n+ ) — Berl=()(nt+l) _ (@)(n)(n+1) € Z.
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Case r = 2: (n_l)g(nH) = ("_1)(”):§3q+2+1) =(n—-1)(n)(g+1) € Z.
(n—l)g(n+1) c 7.

In all three cases, we have

NOTE: We cannot prove this by induction, because the domain is Z.

Prove or disprove: For all z € R, we must have z|z| < x[z].

The statement is false, so we need a counterexample. Any negative number that is not
an integer will work, but you need to pick a specific one. For example, take z = —0.5:
z|z| = (-0.5)(—=1) = 0.5, while z[z] = (—0.5)(0) = 0. Note that 0.5 > 0.

Prove or disprove: For all n € N, we must have 5" > n?.

The statement is true, and the proof will need (vanilla) induction.

Base case n = 1: 5! =5 > 1 = 12. Verified.

Inductive case: Let n € N be arbitrary, and suppose that 5* > n2. Multiply both sides
by 5, and we get 5"t! = 5.5 > 5n2 = n? 4+ 2n? + 2n2. Obviously n? > n?. Also,
since n > 1, we have 2n? > 2n. Lastly, since n > 1, we have 2n? > 1. Adding these, we get
n?+2n%+2n% > n?4+2n+1 = (n+1)2. Combining with the previous, we get 51 > (n+41)2.

Solve the recurrence with initial conditions ag = 3,a; = —1 and relation a,, = a,_1 + 6a,_9
(n>2).

The characteristic polynomial is 72 —r —6 = (r —3)(r +2). Hence the general solution is a,, =
A3"+B(—2)". We now apply our initial conditions to get 3 = a9 = A3°+B(-2)° = A+B, and
—1=a; = A3'+ B(—2)! = 34—2B. We solve the linear system {A+B = 3,34—2B = —1},
getting A = 1, B = 2. Hence, our desired specific solution is a, = 3" + 2(—2)".

Suppose that an algorithm has runtime specified by recurrence relation T, = 9T;,/3 + n?.
Determine what, if anything, the Master Theorem tells us.

This relation is of the type handled by the Master Theorem, with a = 9,0 = 3,k = 2. We
now calculate d = log, a = logz 9 = 2. Because d = k, the “middle ¢,,” case applies, and the
theorem tells us that T}, = ©(n?logn).
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Let a, be a sequence of positive real numbers with lim,, .~ a, = co. Set b, = 1 + a,. Prove

that a, = O(by,).

There are two things to prove:

Proving a,, = O(b,,) (the easier part): Take ng = 1, M = 1, and let n > ng be arbitrary. We
have |ay| = ap, < 14 ap = by, = M|by,], so |a,| < M|by|.

Proving a,, = Q(b,,) (the harder part): Because lim,_,~ a,, = 00, there is some N such that
an, > 1 for every n > N. Take ng = N, M = 2, and let n > ng be arbitrary. We have
Mlay| = 2a, = an + ap > an + 1 = by, = |by], so Mla,| > |by].

NOTE: The hypothesis lim,,_, a, = 0o is needed only for part of the proof of a,, = Q(by,)
(this part is worth a total of one point). If the sequence a,, did not approach oo, the statement
might be false: e.g. if a,, = %, then a, # Q(1 + ay).

Prove: Vx e R, In € Z, 2n <z < 2n + 2.

Let « € R be arbitrary. Suppose ni,ns € Z with 2ny < x < 2n; 4+ 2 and 2ne < x < 2no + 2.
We recombine these inequalities to get 2n; < x < 2ng + 2 and 2no < z < 2ny + 2. The first
one we divide by 2 to get n; < ng + 1. The second we divide by 2 and subtract 1 to get
ny — 1 < n;. Combining, we get ng — 1 < n; < ng + 1. By a theorem from the book (Thm
1.12.d) we conclude ny = no.

Prove: Vx e R, In € Z, 2n < x < 2n + 2.
Let x € R be arbitrary. All we need is to find some n € Z making the double inequality true.

METHOD 1: Use Maximal Element Induction. Define S = {m € Z : m < §}. This set is
nonempty, being a half-line, and has upper bound 5. By Maximal Element Induction, S has
some maximal element n € Z, where n < § and n+1 > 3. Multiply each by 2 and recombine
to get 2n < x < 2n + 2, as desired.

METHOD 2: Use Minimal Element Induction. Define S = {m € Z:m > 5 — 1}. This set is
nonempty, being a half-line, and has lower bound § — 1. By Minimal Element Induction, S
has some minimal element n € Z, where n > § —1 and n — 1 < § — 1. Multiply each by 2
and recombine to get 2n < x < 2n + 2, as desired.

METHOD 3: Use properties of floors. Take n = | 3], an integer. By the definition of floor,
we have n < 5 < n+ 1. Multiply through by 2 to get 2n < x < 2n + 2, as desired.

METHOD 4 (found by a clever student): Take t = |x], an integer. By definition of floor, we
have t <z < t+ 1. By a theorem from the book (Thm 1.6), ¢ is either even or odd.

Case tis even: Thereisn € Z witht =2n. Hence 2n=t<ax <t+1=2n+1<2n+ 2.
Case t is odd: Thereisn € Z witht = 2n+ 1. Hence 2n < 2n+1 =t <z < t+1 =
Cn+1)+1=2n+2.

In both cases, we have found some integer n with 2n < x < 2n + 2.



